Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Young Minds ; 122024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362230

RESUMO

Did you know that micro-organisms can live in blood? Plasmodium parasites can infect red blood cells and cause a serious disease called malaria. This disease is mostly seen in young children living in Africa. Sick children have a fever, aches, can feel very tired, and in bad cases, they can even die from malaria. There are medicines that cure malaria, but it is hard to get these to everyone who needs them. Fortunately, as children grow older, they do not feel as sick when they are infected by the malaria-causing parasite. Better yet, adults hardly ever get malaria. The reason for this difference between children and adults has to do with how well the body's defense system can fight off the parasite. Keep reading if you want to learn more about malaria, the Plasmodium parasite and how the immune system fights against it.

2.
iScience ; 26(12): 108496, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098745

RESUMO

Atypical B cells are a population of activated B cells that are commonly enriched in individuals with chronic immune activation but are also part of a normal immune response to infection or vaccination. To better define the role of atypical B cells in the human adaptive immune response, we performed single-cell sequencing of transcriptomes, cell surface markers, and B cell receptors in individuals with chronic exposure to the malaria parasite Plasmodium falciparum, a condition known to lead to accumulation of circulating atypical B cells. We identified three previously uncharacterized populations of atypical B cells with distinct transcriptional and functional profiles and observed marked differences among these three subsets in their ability to produce immunoglobulin G upon T-cell-dependent activation. Our findings help explain the conflicting observations in prior studies regarding the function of atypical B cells and highlight their different roles in the adaptive immune response in chronic inflammatory conditions.

3.
RSC Adv ; 13(32): 21808-21819, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37475761

RESUMO

In this work, graphene quantum dots (GQD) were prepared through a hydrothermal process. The photoluminescence (PL) emission spectrum for GQD prepared with high NH4OH concentration (sample D1-t) was attained at lower wavelength (406 nm), compared to GQD synthesized with low NH4OH concentration (sample D2-t attained at 418 nm). From these results, a smaller particle size for D1-t was deduced; according to TEM images the GQD particles are around 5 nm. The Raman ID3/IG ratio which is related to C-O groups at the edges of GQD and the full width at half maximum was lower for D1-t than D2-t. This was ascribed to the amine group incorporation at the edges and at the basal planes in D1-t, whilst in D2-t they prefer principally the edges of the GQD structure. The ZnO nanoparticles bonded to GQD (ZnO-GQD, nanocomposites) enhance the PL emission intensity. The H2O2 detection tested by photoluminescence spectroscopy, was found to occur thanks to the ZnO from the nanocomposite and its interaction with H2O2, producing a quenching effect. This quenching was accentuated by the increase of the H2O2 concentration. Such properties suggest the ZnO-GQD nanocomposite as a candidate to be used as a sensor material.

4.
Epigenetics Chromatin ; 16(1): 25, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322481

RESUMO

Gene expression in malaria parasites is subject to various layers of regulation, including histone post-translational modifications (PTMs). Gene regulatory mechanisms have been extensively studied during the main developmental stages of Plasmodium parasites inside erythrocytes, from the ring stage following invasion to the schizont stage leading up to egress. However, gene regulation in merozoites that mediate the transition from one host cell to the next is an understudied area of parasite biology. Here, we sought to characterize gene expression and the corresponding histone PTM landscape during this stage of the parasite lifecycle through RNA-seq and ChIP-seq on P. falciparum blood stage schizonts, merozoites, and rings, as well as P. berghei liver stage merozoites. In both hepatic and erythrocytic merozoites, we identified a subset of genes with a unique histone PTM profile characterized by a region of H3K4me3 depletion in their promoter. These genes were upregulated in hepatic and erythrocytic merozoites and rings, had roles in protein export, translation, and host cell remodeling, and shared a DNA motif. These results indicate that similar regulatory mechanisms may underlie merozoite formation in the liver and blood stages. We also observed that H3K4me2 was deposited in gene bodies of gene families encoding variant surface antigens in erythrocytic merozoites, which may facilitate switching of gene expression between different members of these families. Finally, H3K18me and H2K27me were uncoupled from gene expression and were enriched around the centromeres in erythrocytic schizonts and merozoites, suggesting potential roles in the maintenance of chromosomal organization during schizogony. Together, our results demonstrate that extensive changes in gene expression and histone landscape occur during the schizont-to-ring transition to facilitate productive erythrocyte infection. The dynamic remodeling of the transcriptional program in hepatic and erythrocytic merozoites makes this stage attractive as a target for novel anti-malarial drugs that may have activity against both the liver and blood stages.


Assuntos
Parasitos , Plasmodium , Animais , Merozoítos/genética , Merozoítos/metabolismo , Parasitos/genética , Parasitos/metabolismo , Histonas/metabolismo , Código das Histonas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fígado/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Esquizontes/metabolismo , Processamento de Proteína Pós-Traducional , Expressão Gênica
5.
Immunity ; 56(2): 234-236, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792569

RESUMO

The development of a transmission-blocking vaccine (TBV) against malaria is hampered by poor understanding of functional antibody responses. In this issue of Immunity, Fabra-Garcia et al., Ivanochko et al., and Tang et al. isolate human monoclonal antibodies against the two most promising TBV candidates, Pfs48/45 and Pfs230, and map the epitopes responsible for potent transmission-reducing activity.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Malária Falciparum/prevenção & controle , Proteínas de Protozoários , Anticorpos Antiprotozoários , Malária/prevenção & controle , Plasmodium falciparum , Antígenos de Protozoários
6.
Front Immunol ; 13: 809264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720313

RESUMO

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.


Assuntos
Malária , Proteína 1 de Superfície de Merozoito , Adulto , Animais , Anticorpos Antiprotozoários , Formação de Anticorpos , Criança , Humanos , Imunoglobulina G , Imunoglobulina M/metabolismo , Células B de Memória , Merozoítos , Plasmodium falciparum , Receptores de Antígenos de Linfócitos B/metabolismo , Uganda
7.
PLoS One ; 16(12): e0261656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34936684

RESUMO

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


Assuntos
COVID-19/imunologia , Receptores Fc/metabolismo , Proteínas com Domínio T/metabolismo , Adulto , Idoso , Anticorpos Antivirais/sangue , Linfócitos B/metabolismo , Biomarcadores/análise , COVID-19/metabolismo , Feminino , Citometria de Fluxo/métodos , Hospitalização/tendências , Humanos , Imunoglobulina G/sangue , Memória Imunológica , Masculino , Células B de Memória/imunologia , Células B de Memória/metabolismo , Pessoa de Meia-Idade , Receptores Fc/sangue , Receptores Fc/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas com Domínio T/sangue
8.
bioRxiv ; 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34611662

RESUMO

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n=8) or severe (n=5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG + B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG + B cells showed increased expression of markers associated with durable B cell memory, including T-bet, FcRL5, and CD11c, which was not observed after severe disease. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet + IgG + memory B cells decreased to baseline levels. Collectively, our results suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.

9.
Antioxidants (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803289

RESUMO

Dimethyl fumarate (DMF), an antioxidant/anti-inflammatory drug approved for the treatment of multiple sclerosis, induces antioxidant enzymes, in part through transcriptional upregulation. We hypothesized that DMF administration to simian immunodeficiency virus (SIV)-infected rhesus macaques would induce antioxidant enzyme expression and reduce oxidative injury and inflammation throughout the brain. Nine SIV-infected, CD8+-T-lymphocyte-depleted rhesus macaques were studied. Five received oral DMF prior to the SIV infection and through to the necropsy day. Protein expression was analyzed in 11 brain regions, as well as the thymus, liver, and spleen, using Western blot and immunohistochemistry for antioxidant, inflammatory, and neuronal proteins. Additionally, oxidative stress was determined in brain sections using immunohistochemistry (8-OHdG, 3NT) and optical redox imaging of oxidized flavoproteins containing flavin adenine dinucleotide (Fp) and reduced nicotinamide adenine dinucleotide (NADH). The DMF treatment was associated with no changes in virus replication; higher expressions of the antioxidant enzymes NQO1, GPX1, and HO-1 in the brain and PRDX1 and HO-2 in the spleen; lower levels of 8-OHdG and 3NT; a lower optical redox ratio. The DMF treatment was also associated with increased expressions of cell-adhesion molecules (VCAM-1, ICAM-1) and no changes in HLA-DR, CD68, GFAP, NFL, or synaptic proteins. The concordantly increased brain antioxidant enzyme expressions and reduced oxidative stress in DMF-treated SIV-infected macaques suggest that DMF could limit oxidative stress throughout the brain through effective induction of the endogenous antioxidant response. We propose that DMF could potentially induce neuroprotective brain responses in persons living with HIV.

10.
J Neurovirol ; 26(6): 846-862, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910432

RESUMO

Previous studies showed that persons living with HIV (PLWH) demonstrate higher brain prefrontal cortex neuroinflammation and immunoproteasome expression compared to HIV-negative individuals; these associate positively with HIV levels. Lower expression of the antioxidant enzyme heme oxygenase 1 (HO-1) was observed in PLWH with HIV-associated neurocognitive impairment (HIV-NCI) compared to neurocognitively normal PLWH. We hypothesized that similar expression patterns occur throughout cortical, subcortical, and brainstem regions in PLWH, and that neuroinflammation and immunoproteasome expression associate with lower expression of neuronal markers. We analyzed autopsied brains (15 regions) from 9 PLWH without HIV-NCI and 7 matched HIV-negative individuals. Using Western blot and RT-qPCR, we quantified synaptic, inflammatory, immunoproteasome, endothelial, and antioxidant biomarkers, including HO-1 and its isoform heme oxygenase 2 (HO-2). In these PLWH without HIV-NCI, we observed higher expression of neuroinflammatory, endothelial, and immunoproteasome markers in multiple cortical and subcortical regions compared to HIV-negative individuals, suggesting a global brain inflammatory response to HIV. Several regions, including posterior cingulate cortex, globus pallidus, and cerebellum, showed a distinct pattern of higher type I interferon (IFN)-stimulated gene and immunoproteasome expression. PLWH without HIV-NCI also had (i) stable or higher HO-1 expression and positive associations between (ii) HO-1 and HIV levels (CSF, plasma) and (iii) HO-1 expression and neuroinflammation, in multiple cortical, subcortical, and brainstem regions. We observed no differences in synaptic marker expression, suggesting little, if any, associated neuronal injury. We speculate that this may reflect a neuroprotective effect of a concurrent HO-1 antioxidant response despite global neuroinflammation, which will require further investigation.


Assuntos
Córtex Cerebral/metabolismo , Disfunção Cognitiva/genética , Infecções por HIV/genética , HIV-1/patogenicidade , Heme Oxigenase-1/genética , Idoso , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/virologia , Autopsia , Biomarcadores/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/virologia , Estudos de Casos e Controles , Núcleo Caudado/metabolismo , Núcleo Caudado/virologia , Córtex Cerebral/virologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/virologia , Feminino , Regulação da Expressão Gênica , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Heme Oxigenase-1/metabolismo , Humanos , Inflamação , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Masculino , Pessoa de Meia-Idade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669339

RESUMO

Brain injury occurs within days in simian immunodeficiency virus (SIV) or human immunodeficiency virus (HIV) infection, and some recovery may occur within weeks. Inflammation and oxidative stress associate with such injury, but what drives recovery is unknown. Chronic HIV infection associates with reduced brain frontal cortex expression of the antioxidant/anti-inflammatory enzyme heme oxygenase-1 (HO-1) and increased neuroinflammation in individuals with cognitive impairment. We hypothesized that acute regional brain injury and recovery associate with differences in regional brain HO-1 expression. Using SIV-infected rhesus macaques, we analyzed multiple brain regions through acute and chronic infection (90 days postinfection [dpi]) and quantified viral (SIV gag RNA), synaptic (PSD-95; synaptophysin), axonal (neurofilament/neurofilament light chain [NFL]), inflammatory, and antioxidant (enzymes, including heme oxygenase isoforms [HO-1, HO-2]) markers. PSD-95 was reduced in the brainstem, basal ganglia, neocortex, and cerebellum within 13 dpi, indicating acute synaptic injury throughout the brain. All areas except the brainstem recovered. Unchanged NFL was consistent with no acute axonal injury. SIV RNA expression was highest in the brainstem throughout infection, and it associated with neuroinflammation. Surprisingly, during the synaptic injury and recovery phases, HO-2, and not HO-1, progressively decreased in the brainstem. Thus, acute SIV synaptic injury occurs throughout the brain, with spontaneous recovery in regions other than the brainstem. Within the brainstem, the high SIV load and inflammation, along with reduction of HO-2, may impair recovery. In other brain regions, stable HO-2 expression, with or without increasing HO-1, may promote recovery. Our data support roles for heme oxygenase isoforms in modulating recovery from synaptic injury in SIV infection and suggest their therapeutic targeting for promoting neuronal recovery.IMPORTANCE Brain injury induced by acute simian (or human) immunodeficiency virus infection may persist or spontaneously resolve in different brain regions. Identifying the host factor(s) that promotes spontaneous recovery from such injury may reveal targets for therapeutic drug strategies for promoting recovery from acute neuronal injury. The gradual recovery from such injury observed in many, but not all, brain regions in the rhesus macaque model is consistent with the possible existence of a therapeutic window of opportunity for intervening to promote recovery, even in those regions not showing spontaneous recovery. In persons living with human immunodeficiency virus infection, such neuroprotective treatments could ultimately be considered as adjuncts to the initiation of antiretroviral drug therapy.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Animais , Anti-Inflamatórios , Encéfalo/patologia , Encéfalo/virologia , Lesões Encefálicas/patologia , Lesões Encefálicas/virologia , Modelos Animais de Doenças , Feminino , Infecções por HIV , Heme Oxigenase-1/metabolismo , Inflamação , Macaca mulatta , Masculino , Estresse Oxidativo , Isoformas de Proteínas , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-32277015

RESUMO

OBJECTIVE: To determine whether regulatory variations in the heme oxygenase-1 (HO-1) promoter (GT) n dinucleotide repeat length could identify unique population genetic risks for neurocognitive impairment (NCI) in persons living with HIV (PLWH), we genotyped 528 neurocognitively assessed PLWH of European American and African American descent and linked genotypes to cognitive status. METHODS: In this cross-sectional study of PLWH (the CNS HIV Antiretroviral Therapy Effect Research cohort), we determined HO-1 (GT) n repeat lengths in 276 African Americans and 252 European Americans. Using validated criteria for HIV-associated NCI (HIV NCI), we found associations between allele length genotypes and HIV NCI and between genotypes and plasma markers of monocyte activation and inflammation. For comparison of HO-1 (GT) n allele frequencies with another population of African ancestry, we determined HO-1 (GT) n allele lengths in African PLWH from Botswana (n = 428). RESULTS: PLWH with short HO-1 (GT) n alleles had a lower risk for HIV NCI (OR = 0.63, 95% CI: 0.42-0.94). People of African ancestry had a lower prevalence of short alleles and higher prevalence of long alleles compared with European Americans, and in subgroup analyses, the protective effect of the short allele was observed in African Americans and not in European Americans. CONCLUSIONS: Our study identified the short HO-1 (GT) n allele as partially protective against developing HIV NCI. It further suggests that this clinical protective effect is particularly relevant in persons of African ancestry, where the lower prevalence of short HO-1 (GT) n alleles may limit induction of HO-1 expression in response to inflammation and oxidative stress. Therapeutic strategies that enhance HO-1 expression may decrease HIV-associated neuroinflammation and limit HIV NCI.


Assuntos
Negro ou Afro-Americano/genética , Infecções por HIV/complicações , Heme Oxigenase-1/genética , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/genética , População Branca/genética , Adulto , Negro ou Afro-Americano/etnologia , Estudos Transversais , Repetições de Dinucleotídeos/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Neurocognitivos/etnologia , Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Fatores de Proteção , População Branca/etnologia
13.
J Neuroinflammation ; 15(1): 70, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510721

RESUMO

BACKGROUND: Heme oxygenase-1 (HO-1) is a critical cytoprotective enzyme that limits oxidative stress, inflammation, and cellular injury within the central nervous system (CNS) and other tissues. We previously demonstrated that HO-1 protein expression is decreased within the brains of HIV+ subjects and that this HO-1 reduction correlates with CNS immune activation and neurocognitive dysfunction. To define a potential CNS protective role for HO-1 against HIV, we analyzed a well-characterized HIV autopsy cohort for two common HO-1 promoter region polymorphisms that are implicated in regulating HO-1 promoter transcriptional activity, a (GT)n dinucleotide repeat polymorphism and a single nucleotide polymorphism (A(-413)T). Shorter HO-1 (GT)n repeats and the 'A' SNP allele associate with higher HO-1 promoter activity. METHODS: Brain dorsolateral prefrontal cortex tissue samples from an autopsy cohort of HIV-, HIV+, and HIV encephalitis (HIVE) subjects (n = 554) were analyzed as follows: HO-1 (GT)n polymorphism allele lengths were determined by PCR and capillary electrophoresis, A(-413)T SNP alleles were determined by PCR with allele specific probes, and RNA expression of selected neuroimmune markers was analyzed by quantitative PCR. RESULTS: HIV+ subjects with shorter HO-1 (GT)n alleles had a significantly lower risk of HIVE; however, shorter HO-1 (GT)n alleles did not correlate with CNS or peripheral viral loads. In HIV+ subjects without HIVE, shorter HO-1 (GT)n alleles associated significantly with lower expression of brain type I interferon response markers (MX1, ISG15, and IRF1) and T-lymphocyte activation markers (CD38 and GZMB). No significant correlations were found between the HO-1 (GT)n repeat length and brain expression of macrophage markers (CD163, CD68), endothelial markers (PECAM1, VWF), the T-lymphocyte marker CD8A, or the B-lymphocyte maker CD19. Finally, we found no significant associations between the A(-413)T SNP and HIVE diagnosis, HIV viral loads, or any neuroimmune markers. CONCLUSION: Our data suggest that an individual's HO-1 promoter region (GT)n polymorphism allele repeat length exerts unique modifying risk effects on HIV-induced CNS neuroinflammation and associated neuropathogenesis. Shorter HO-1 (GT)n alleles increase HO-1 promoter activity, which could provide neuroprotection through decreased neuroimmune activation. Therapeutic strategies that induce HO-1 expression could decrease HIV-associated CNS neuroinflammation and decrease the risk for development of HIV neurological disease.


Assuntos
Encéfalo/imunologia , Repetições de Dinucleotídeos/genética , Encefalite Viral , Heme Oxigenase-1/genética , Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Adulto , Idoso , Antígenos CD/metabolismo , Encéfalo/metabolismo , Estudos de Coortes , Encefalite Viral/etiologia , Encefalite Viral/genética , Encefalite Viral/patologia , Feminino , Estudos de Associação Genética , Infecções por HIV/complicações , Infecções por HIV/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro
14.
Front Cell Neurosci ; 10: 303, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119571

RESUMO

Fractalkine (FKN) is a chemokine expressed constitutively by healthy neurons and signals to microglia upon interaction with the FKN receptor, CX3CR1. Signaling between FKN and CX3CR1 transduces inhibitory signals that ameliorate microglial activation and proinflammatory cytokine release in neuroinflammatory conditions. The aim of this study is to determine the mechanisms associated with microglial activation and vascular leakage during diabetic retinopathy (DR) and under conditions of low-level endotoxemia, common in diabetic patients. Utilizing the Ins2Akita strain (Akita), a mouse model of type 1 diabetes, our results show that leakage of the blood-protein fibrin(ogen) into the retina occurs as a result of chronic (4 months) but not acute (1.5 months) hyperglycemia. Conversely, inducing endotoxin-mediated systemic inflammation during acute diabetes resulted in fibrinogen deposition in the retina, a phenotype that was exacerbated in mice lacking CX3CR1 signaling. Systemic inflammation in Cx3cr1-/- mice led to robust perivascular clustering of proliferating microglia in areas of fibrinogen extravasation, and induced IL-1ß expression in microglia and astrocytes. Lastly, we determined a protective effect of modulating FKN/CX3CR1 signaling in the diabetic retina. We show that intravitreal (iv) administration of recombinant FKN into diabetic FKN-KO mice, reduced fibrinogen deposition and perivascular clustering of microglia in the retina during systemic inflammation. These data suggest that dysregulated microglial activation via loss of FKN/CX3CR1 signaling disrupts the vascular integrity in retina during systemic inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...